Multiple Choice Questions and Answers

 The moments of inertia of a circular ring of mass M and radius r about a diameter is -

a.
$$Mr^2$$
 (b) $\frac{1}{4}Mr^2$ (c) $\frac{1}{2}Mr^2$ (d) $\frac{1}{8}Mr^2$

Answer: (c)

2. Moment of inertia of the elliptic disc $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ of mass M about minor axis is -

(a)
$$\frac{1}{4}Mb^2$$
 (b) $\frac{1}{4}Ma^2$ (c) $\frac{1}{2}Ma^2$ (d) $\frac{1}{2}Mb^2$

Answer: (b)

- 3. Moment of inertia of a uniform rod of length 6 cm and mass 8 gm about an axis through an extremity and perpendicular to it
 - a. 96 $gm.cm^2$ (b) 48 $gm.cm^2$ (c) 384 $gm.cm^2$ (d) 192 $gm.cm^2$

Answer: (a)

- 4. Moment of inertia of a rectangular lamina of mass 20 gm and length 8 cm and breadth 6 cm about a line through its centre and parallel to the edge of length 8 cm
 - a. $120 \ gm \ cm^2$ (b) $60 \ gm \ cm^2$ (c) $30 \ gm \ cm^2$ (d) $150 \ gm \ cm^2$

Answer: (b)

5. Find the moment of inertia of a rectangular parallelopiped of mass M and lengths of the sides are 8cm, 4cm, 6cm about an axis through its centre and parallel to the edge of length 8 cm -

$$(a)^{\frac{13M}{3}}(b)^{\frac{25M}{3}}(c)6M(d)12M$$

Answer: (a)

6. Find the moment of inertia of a circular ring of diameter 10 cm and mass 25 gm about a line through the centre and perpendicular to its plane-

a.
$$125 \ gm \ cm^2$$
 (b) $525 \ gm \ cm^2$ (c) $625 \ gm \ cm^2$ (d) $\frac{625}{2} \ gm \ cm^2$

Answer: (c)

7. The moment of inertia of a hollow sphere of mass M and radius 3 cm about a diameter is –

a.
$$\frac{18M}{5}$$
 (b) $\frac{72M}{5}$ (c) 6M (d) 24M

Answer: (c)

8. The moment of inertia of a right circular cylinder about its axis whose mass is M and 2a be the diameter of its base –

a.
$$\frac{1}{2}Ma^2$$
 (b) $\frac{1}{4}Ma^2$ (c) $\frac{2}{3}Ma^2$ (d) $\frac{1}{6}Ma^2$

Answer: (a)

